本节用于记录Java HashMap底层数据结构、方法实现原理等,基于JDK 1.8。
底层数据结构
Java HashMap底层采用哈希表结构(数组+链表、JDK1.8后为数组+链表或红黑树)实现,结合了数组和链表的优点:
数组优点:通过数组下标可以快速实现对数组元素的访问,效率极高;
链表优点:插入或删除数据不需要移动元素,只需修改节点引用,效率极高。
HashMap图示如下所示:
HashMap内部使用数组存储数据,数组中的每个元素类型为Node<K,V>
:
1 | static class Node<K,V> implements Map.Entry<K,V> { |
Node包含了四个字段:hash、key、value、next,其中next表示链表的下一个节点。
HashMap通过hash
方法计算key的哈希码,然后通过(n-1)&hash
公式(n为数组长度)得到key在数组中存放的下标。当两个key在数组中存放的下标一致时,数据将以链表的方式存储(哈希冲突,哈希碰撞)。我们知道,在链表中查找数据必须从第一个元素开始一层一层往下找,直到找到为止,时间复杂度为O(N),所以当链表长度越来越长时,HashMap的效率越来越低。
为了解决这个问题,JDK1.8开始采用数组+链表+红黑树的结构来实现HashMap。当链表中的元素超过8个(TREEIFY_THRESHOLD)并且数组长度大于64(MIN_TREEIFY_CAPACITY)时,会将链表转换为红黑树,转换后数据查询时间复杂度为O(logN)。
红黑树的节点使用TreeNode表示:
1 | static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> { |
HashMap包含几个重要的变量:
1 | // 数组默认的初始化长度16 |
上面这些字段在下面源码解析的时候尤为重要,其中需要着重讨论的是加载因子是什么,为什么默认值为0.75f。
加载因子也叫扩容因子,用于决定HashMap数组何时进行扩容。比如数组容量为16,加载因子为0.75,那么扩容阈值为16*0.75=12
,即HashMap数据量大于等于12时,数组就会进行扩容。我们都知道,数组容量的大小在创建的时候就确定了,所谓的扩容指的是重新创建一个指定容量的数组,然后将旧值复制到新的数组里。扩容这个过程非常耗时,会影响程序性能。所以加载因子是基于容量和性能之间平衡的结果:
- 当加载因子过大时,扩容阈值也变大,也就是说扩容的门槛提高了,这样容量的占用就会降低。但这时哈希碰撞的几率就会增加,效率下降;
- 当加载因子过小时,扩容阈值变小,扩容门槛降低,容量占用变大。这时候哈希碰撞的几率下降,效率提高。
可以看到容量占用和性能是此消彼长的关系,它们的平衡点由加载因子决定,0.75是一个即兼顾容量又兼顾性能的经验值。
此外用于存储数据的table字段使用transient修饰,通过transient修饰的字段在序列化的时候将被排除在外,那么HashMap在序列化后进行反序列化时,是如何恢复数据的呢?HashMap通过自定义的readObject/writeObject方法自定义序列化和反序列化操作。这样做主要是出于以下两点考虑:
- table一般不会存满,即容量大于实际键值对个数,序列化table未使用的部分不仅浪费时间也浪费空间;
- key对应的类型如果没有重写hashCode方法,那么它将调用Object的hashCode方法,该方法为native方法,在不同JVM下实现可能不同;换句话说,同一个键值对在不同的JVM环境下,在table中存储的位置可能不同,那么在反序列化table操作时可能会出错。
所以在HashXXX类中(如HashTable,HashSet,LinkedHashMap等等),我们可以看到,这些类用于存储数据的字段都用transient修饰,并且都自定义了readObject/writeObject方法。readObject/writeObject方法这节就不进行源码分析了,有兴趣自己研究。
put源码
put方法源码如下:
1 | public V put(K key, V value) { |
put方法通过hash函数计算key对应的哈希值,hash函数源码如下:
1 | static final int hash(Object key) { |
如果key为null,返回0,不为null,则通过(h = key.hashCode()) ^ (h >>> 16)
公式计算得到哈希值。该公式通过hashCode的高16位异或低16位得到哈希值,主要从性能、哈希碰撞角度考虑,减少系统开销,不会造成因为高位没有参与下标计算从而引起的碰撞。
得到key对应的哈希值后,再调用putVal(hash(key), key, value, false, true)
方法插入元素:
1 | final V putVal(int hash, K key, V value, boolean onlyIfAbsent, |
put操作过程总结:
- 判断HashMap数组是否为空,是的话初始化数组(由此可见,在创建HashMap对象的时候并不会直接初始化数组);
- 通过
(n-1) & hash
计算key在数组中的存放索引; - 目标索引位置为空的话,直接创建Node存储;
目标索引位置不为空的话,分下面三种情况:
4.1. key相同,覆盖旧值;
4.2. 该节点类型是红黑树的话,执行红黑树插入操作;
4.3. 该节点类型是链表的话,遍历到最后一个元素尾插入,如果期间有遇到key相同的,则直接覆盖。如果链表长度大于等于TREEIFY_THRESHOLD,并且数组容量大于等于MIN_TREEIFY_CAPACITY,则将链表转换为红黑树结构;
判断HashMap元素个数是否大于等于threshold,是的话,进行扩容操作。
get源码
get和put相比,就简单多了,下面是get操作源码:
1 | public V get(Object key) { |
resize源码
由前面的put源码分析我们知道,数组的初始化和扩容都是通过调用resize方法完成的,所以现在来关注下resize方法的源码:
1 | final Node<K,V>[] resize() { |
JDK1.8在扩容时通过高位运算e.hash & oldCap
结果是否为0来确定元素是否需要移动,主要有如下两种情况:
情况一:
扩容前oldCap=16,hash=5,(n-1)&hash=15&5=5
,hash&oldCap=5&16=0
;
扩容后newCap=32,hash=5,(n-1)&hash=31&5=5
,hash&oldCap=5&16=0
。
这种情况下,扩容后元素索引位置不变,并且hash&oldCap==0。
情况二:
扩容前oldCap=16,hash=18,(n-1)&hash=15&18=2
,hash&oldCap=18&16=16
;
扩容后newCap=32,hash=18,(n-1)&hash=31&18=18
,hash&oldCap=18&16=16
。
这种情况下,扩容后元素索引位置为18,即旧索引2加16(oldCap),并且hash&oldCap!=0。
遍历原理
我们通常使用下面两种方式遍历HashMap:
1 | HashMap<String, Object> map = new HashMap<>(); |
程序输出:
1 | 1: a |
通过前面对put源码的分析,我们知道HashMap是无序的,输出元素顺序和插入元素顺序一般都不一样。但是多次运行上面的程序你会发现,每次遍历的顺序都是一样的。那么遍历的原理是什么,内部是如何操作的?
通过entrySet或者keySet遍历,它们的内部原理是一样的,这里以entrySet为例。
通过查看代码对应的class文件,你会发现下面这段代码实际会被转换为iterator遍历:
1 | Set<Map.Entry<String, Object>> entries = map.entrySet(); |
增强for循环会被编译为:
1 | Set<Entry<String, Object>> entries = map.entrySet(); |
我们查看entrySet,iterator,hasNext,next方法的源码就可以清楚的了解到HashMap遍历原理了:
1 | public Set<Map.Entry<K,V>> entrySet() { |
总之,遍历HashMap的过程就是从头查找HashMap数组中的不为空的结点,如果该结点下存在链表,则遍历该链表,遍历完链表后再找HashMap数组中下一个不为空的结点,以此进行下去直到遍历结束。
那么,如果某个结点下是红黑树结构的话,怎么遍历?其实当链表转换为红黑树时,链表节点里包含的next字段信息是保留的,所以我们依旧可以通过红黑树节点中的next字段找到下一个节点。
与JDK1.7主要区别
JDK1.7 HashMap源码:https://github.com/ZhaoX/jdk-1.7-annotated/blob/master/src/java/util/HashMap.java。
数组元素类型不同
JDK1.8 HashMap数组元素类型为Node<K,V>
,JDK1.7 HashMap数组元素类型为Entry<K,V>
:
1 | transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE; |
实际就是换了个类名,并没有什么本质不同。
hash计算规则不同
JDK1.7 hash计算规则为:
1 | final int hash(Object k) { |
相比于JDK1.8的hash方法,JDK1.7的hash方法的性能会稍差一点。
put操作不同
JDK1.7并没有使用红黑树,如果哈希冲突后,都用链表解决。区别于JDK1.8的尾部插入,JDK1.7采用头部插入的方式:
1 | public V put(K key, V value) { |
扩容操作不同
JDK1.8在扩容时通过高位运算e.hash & oldCap
结果是否为0来确定元素是否需要移动,JDK1.7重新计算了每个元素的哈希值,按旧链表的正序遍历链表、在新链表的头部依次插入,即在转移数据、扩容后,容易出现链表逆序的情况:
1 | void resize(int newCapacity) { |
此时若多线程并发执行resize操作,容易出现环形链表,从而在获取数据、遍历链表时造成死循环,具体可以参考:https://blog.csdn.net/hhx0626/article/details/54024222。